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ABSTRACT

This thesis considers the expected matched filter response to a

signal transmitted through a communications channel whose average

scattering properties are known in terms of a scattering function. The

matched filter is treated as an image which has been blurred by the

properties of the interrogating signal. Removing this blurring is

called deconvolution and is the problem addressed in this thesis. The

problem is formulated to allow efficient application of the Singular

Value Decomposition (SVD) as a method of deconvolution. It is shown

that this form is the identical operation to the standard deconvolution

via spectral division. Additionally, the problem of noise in the image

is addressed and the trade-off between resolution and noise is

discussed.
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LIST OF SYMBOLS

The following notation will be adhered to in this thesis.

a or A is a vector

ai is the ith element of a

A is a matrix

al
a2  0

diag (al,a2,...,aN) = , a diagonal matrix

0
ax_

Given two nrn general matrices A and B,

AT is the transpose with dimensions nxm

AH is the Hermetian transpose with dimensions nxm

r(A) is the rank of the matrix A

A71 is the inverse which exists if m=n=r(A)

A+ is the pseudo-inverse, also called the Moore-Penrose (MP)
generalized inverse

(A)ij is the element of A in the ith row and jth column

AoB denotes the element-by-element multiplication,
that is if C=AoB, then (C)ij = (A)ij (B)ij

AGB is the direct or tensor product

A
is the element-by-element division,

B A (A)ij

that is if C = >----<, then (C)ij = (B)i.
B B~i
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Chapter 1

General Introduction

An important signal processing problem which has been receiving

increased attention is that of identifying the transmission character-

istics of a noisy, dispersive communications channel. In the context of

this and many other treatments, these characteristics are modelled as a

scattering process and described by the corresponding scattering

function. The function describing the channel characteristics, called

the channel transfer function, is typically treated as a linear time-

varying filter in a noisy channel. This leads directly to the deriva-

tion of the scattering function.

The scattering function can be thought of as a description of the

time and frequency spreading characteristics of the channel. In an

active scheme, a signal is transmitted through the channel to probe the

scattering function. The received signal is processed to extract this

information. There is, however, no perfect probe. Any signal will

distort the scattering function estimate, each according to its own

properties. Analogously, a lens used to image a physical object will

distort the image. Removing the distortion is called deconvolution and

is the central topic of this thesis.

The problem is complicated by the stochastic nature of the channel.

Convolution in this and many other cases corresponds to a multiple band-

pass filtering operation on the signal of interest. The frequencies in

the signal outside these bands are attenuated often to a point below the

average noise content. Deconvolution, being the inverse filter

operation, tends to artifically accentuate the noise as it attempts to

compensate for the lost frequency content. This effect can be severe
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enough to hide the useful information, rendering the estimate

meaningless. For this reason, many methods of deconvolu:ion have been

studied[1, 9] attempting to avoid this problem.

The method used in this thesis is that of employing the Singular

Value Decompsition (SVD) to form an inverse used to deconvolve. The

advantage of this method is that it provides a simple way to recognize

the regions of missing spectral components, manifest as singularities,

and treat them in forming the inverse so as to reduce the distorting

effects of the inverse filter. Since it is not possible to recover

those spectral components buried in the noise, information is lost. The

accuracy of the deconvolved estimate is therefore partially determined

by the signal-to-noise ratio of the return.

Leading up to the deconvolution algorithm, a review of the

mathematical basis is needed. Chapter 2 begins with the typical model

of the communication channel. The concepts of the signal auto-ambiguity

function and the matched filter are presented. Because the algorithm is

ultimately implemented on the digital computer, the equations are

discretized and the remainder of the thesis utilizes this representa-

tion. The balance of the chapter presents the problem in matrix form

and introduces the SVD and the formulation of the pseudo-inverse.

As an important stepping stone to aid in the understanding of the

more complex two-dimensional problem, Chapter 3 presents the

simplified one-dimensional case (range spreading only). It will be

shown that by writing the convolution utilizing a circulant matrix, the

problem of pseudo-inversion deconvolution via the SVD is identical to

deconvolution via spectral division.
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Chapter 4 addresses the problem of deconvolution in two dimensions.

The circulant matrix convolution takes on a more complex form and

although the magnitude of calculations required to form the pseudo-

inverse increases, it remains an efficient algorithm. It will be shown

that the two-dimensional deconvolution via the SVD also is identical to

deconvolution via two-dimensional spectral division. A few graphical

examples of the algorithm implemented in two-dimensions are given. For

the final example, noise was added, and the algorithm's performance in

this case is shown. A short discussion of the estimation error is

presented and is shown to be in agreement with the actual results.
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Chapter 2

Modelling the Channel

2.1 Introduction

The channel to be considered is typically modelled as a noisy,

doubly spread channel characterized by a linear time-varying filter and

estimated by a scattering function. If the goal is to identify the

channel, then a method of estimating the scattering function is

required. In the typical active scheme, a known signal transmitted

through the channel will be spread in frequency and time and this in the

presence of noise is the received signal. This spreading characterizing

the channel is called the scattering function. With knowledge of the

transmitted signal, the received signal can be processed to extract an

estimate of this function.

Although the concept of the scattering function is important to the

discussion, a derivation of the function and its properties is not.

There are several references[1, 12 , 13] to provide a thorough treatment of

the scattering functions which will only be stated in this thesis.

The equations will be immediately discretized allowing the problem

to be cast in matrix form for implementation on the computer. To close

out the chapter, the statement of the SVD theorem is presented followed

by a discussion of its ability to deal with near-singularities in the

matrix that are detrimental to forming a useful pseudo-inverse matrix.

2.2 Fundamentals

Consider an analytic signal x(t). It is transmitted through the

channel and is modified according to the scattering function associated

with the channel. The received signal, y(t), is commonly processed by

the narrow-band correlation receiver,
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m(=,T) f y(t) x*(t-T) 27j tdtl 2, (2-1)

which is the cross-correlation between y(t) and a time (r) and

frequency ( ) shifted version of x(t). This is called the matched

filter and is that filter which maximizes the SNR between the output and

the input in the presence of white noise.[1I
I

The matched filter output contains information about the scattering

function, but only to a certain accuracy. Measurements of any kind can

only be as accurate as the probe used to make the measurements. For

example, a physical object can be measured only to within the accuracy

of the ruler. In this case, the probe is the transmitted signal which

has a finite resolution in both the time and frequency dimensions. This

accuracy is given by the auto-ambiguity function,

a( ,)= fx(t) x*(t-T) e-2fjtdtI2, (2-2)

where * denotes complex conjugation and is a shift invariant function.

The overall effect is a smearing of the scattering function due to

the limited resolution of this ambiguity function. More accurately, the

mean matched filter output formed with the returned signals can be

written as the double convolution of the ambiguity and scattering

functionst 2 ,13l, i.e.,

E {m($,t)} a(i,$,Tt)**s(4,t), (2-3)

where $ and r are hypothesized and T values and s( ,T) is the scat-

tering function. In this manner, the convolution can be thought of as a

mapping of the scattering function into the matched filter. By finding

the inverse mapping operator, the matched filter can be deconvolved to
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recover an estimate of the scattering function. A good analogy is that

of the photographic process. The scattering function corresponds to the

objects to be photographed, and the matched filter average to the

photograph. The ambiguity function is analogous to the lens which

slightly fuzzes the image. The deconvolution process then corresponds

to removing the blur caused by the lens resulting in a clear image.

Any one matched filter output is only a single realization of the

scattering function due to the stochastic nature of the channel. An

estimate of the scattering function requires an average over many

realizations of matched filter outputs. If the scattering function is

non-changing over multiple interrogations, this may be a cimple time

average. For a slowly varying scattering function, a moving average or

a tracking algorithm, possibly with controlled forgetting, may be

employed. The average is generally performed prior to deconvolution,

but may be done following deconvolution depending on the situation. In

any case, the averaging problem in independent of the deconvolution

problem and will not be addressed. It will consequently be dropped

hereafter.

Rewriting (2-3) in an integral form,

m(,T)= ff s( ,T)a(o -4,T -t)dTd. (2-4)

It is clear that if the ambiguity function were a delta function at

(0,T) = (0,0), no deconvolution would be necessary. For a signal

with a near ideal ambiguity function, deconvolution may not be helpful.

There are a great many useful signals, however, with spread ambiguity

functions where deconvolution can be important.
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2.3 Discrete Representation

Because the processing of these signals is generally done

digitally, it is appropriate to develop a discrete representation of the

continuous equations. Digitalization is equivalent to dividing up the

r- plane into a finite number of cells with sufficient resolution to

allow accurate reconstruction in the continuous domain. The size of the

cells must therefore be chosen in accordance with sampling theory.

A signal used for imaging purposes will necessarily be of finite

duration and hence can be represented with a finite number of samples.

Let the transmitted signal be of length L samples starting at r=0 and

with spacing At. Also, suppose the required resolution along p is A ,

centered about 4=0, and the total number of samples in this direction is

K. Without loss of generality, let both L and K be odd. The discrete

representation of Equation (2-2) is written

a(m,n) L I x(1)x *(l-n)e 2Tj(A (nT)T2

1=0

-(K-i) (K-i)
2 , ... , 2

n = -(L-1), ... , (L-1) (2-5)

The ambiguity function is thus (2L-1) samples long in the T direction

centered at T=O, and K samples long in the direction centered at =0.

In general, the size of the scattering functicn is not known. With

knowledge of the channel scattering process, and again the sampling

theorem, the dimensions of s( ,T) can be estimated. Let s(4,T) be



8

centered at T = = 0 and be P and Q samples long in the T and I

directions, rerpectively. Again, let P and Q be odd. The discrete

representation of Equation (2-4) is

PI Q1
m(m,n) = I I s(k,l)a(k-m,n-l)ArAp,

I=-P' k=-Q'

Q+K-1 ]Q+K- 1... ., (

n= (P+L'l (P+L'1) (2-6)

where

p, = P-1 Q, - and L' = 2L-1.
2' 2

These functions and the lengths associated with them will be used

extensively later on.

2.4 Singular Value Decomposition (SVD)

Having written the two-dimensional discrete convolution as equation

(2-6), the next logical step is to write this equation in matrix form.

The double convolution will be expressed as a matrix multiplication;

hence, the general matrix form of Equation (2-6) will be given as

M = AS, (2-7)

where M and S are the matched filter aid scattering function matrices

and A, the ambiguity function matrix, is the operation which maps S into

M. Deconvolution is thus performed by finding a matrix defining the

inverse mapping operation.
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A suitable matrix would be the inverse of A, written A71 .

Multiplying both sides of Equation (2-7) by A71 yields

A-1 M = S (2-8)

where A71A = I, the identity matrix. If A is not of full rank, that is

if one or more of the eigenvalues of A are zero, then A is called a

singular matrix and A71 will not exist. Furthermore, if A is not

square, again A71 will not exist. Instead, the pseudo-inverse (also

called the Moore-Penrose (MP) generalized inverse), A+ must be used.

The formulation of A+ also helps alleviate another major problem.

Deconvolution of a single matched-filter produces only a single

realization of the scattering function due to the stochastic nature of

the process. If the matrix A is ill-conditioned, that is if the ratio

of maximum to minimum eigenvalues (the conditioning number) is

sufficiently large, the deconvolution process may accentuate unwanted

noise resulting in a poor estimate of the scattering function. As an

analogy, consider deconvolution via spectral division in a simple linear

system. The output is the convolution of the input with the system

transfer function. If the transfer function spectrum has a wide dynamic

range, the division of the output spectrum by the transfer function

spectrum will lead to significant errors in the regions where the

transfer function spectrum has small values but the response is finite

due to noise.

For these two reasons, the singular value decomposition (SVD) is a

useful tool. First, a statement of the SVD theorem.[4, 8  Note that [.1

indicates the complex case.
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Let
A E Rm x n ;[Cm x n ,r r

that is, a real valued;[complex] matrix with dimensions mxn and

rank r. Then there exists orthogonal;[unitary] matrices U E

Rmxm;[cmxm ] and V C Rnxn;[cnxn ] such that

A UAVT;[UAVHI (2-9)

where

A'

and

S = diag(al,...,a r ) with

01, ... >r > 0.

The diag(-) operator defines a matrix whose diagonal elements are

the values in the parentheses and whose off-diagonal elements are

all zero. This is commonly referred to as a diagonal matrix.

The columns of the matrix U are the orthonormal eigenvectors

of the matrix ATA;[AHA1 and are called the left singular vectors,

while the columns of the matrix V are the orthonormal eigenvectors

of AAT;[AAH] and are called the right singular vectors. The

numbers Ol,'",ar and ar+1 - 0,"',an = 0 are called the singular

values and are the positive square roots of the eigenvalues of

ATA;[AHAI or.AAT;[AAH].

Under certain conditions the SVD of A takes on a simpler form

making its computation less cumbersome. Such a case is that of a real

symetric matrix A of dimensions NxN. Because of this symmetry,

ATA - AAT



11

and so

U =V

and is of dimension NxN. The SVD of A becomes

A = UAUH (2-10)

where

A =diag{ava **,.a NI}
- dao0,1l''',N-i}. (2-11)

Forming the product ATA, equation (2-10) yields the result

ATA = UAUH UAUH = UA2UH, (2-12)

where, because U is a unitary matrix,

UH = U- I and so U11U = I,

and

A2 = diag a, a2  .. 2 }. (2-13)- 0' "' N-I

Clearly the eigenvalues of ATA are the squares of the eigenvalues of A.

Therefore the singular values of A are also the eigenvalues of A. This

case is of fundamental importance in the sections to follow.

The pseudo-inverse A+ has the property that

A+A = VI+VH  (2-14)

where I+ is the pseudo-identity matrix. I+ is equal to the identity

matrix I if A is of full rank (ak > 0 for all k). If not, I+ contains

zeroes on its diagonal corresponding to the zero valued singular values
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on the diagonal of A. Applying this condition to Equation (2-9),

A+ = V A-1 UH  (2-15)

where

A= diag , ... , a- , 0, ... 0} (2-16)

having n-r zeroes.

Define the new scalar function,

+if1 ia. (2-17)
if ai g

where C is an arbitrary yet carefully chosen threshhold value such that

c > 0. If e = 0, the pseudo-inverse is formed as given in equations

(2-15) and (2-16). If c > 0, the SVD expansion is truncated and the

pseudo-inverse is

A+ = VA+UH (2-18)

where

_ diag {a, ... , (2-19)

If the conditioning number of A (amax/amin) is small, e may be set to

zero without affecting the integrity of the deconvolution process. If,

however, A has a large conditioning number, A is said to be

ill-conditioned, and taking the inverse of the small singular values
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will amplify the effect of random perturbations, making the 
deconvolu-

tion a very noisy process. Since truncation of the SVD to reduce the

introduction of noise also results in loss of structural information,

careful consideration must be given to the choice of e.
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Chapter 3

The One-Dimensional Case

3.1 Introduction

Thus far, nothing has been said about the actual form of the ambi-

guity matrix A. Obviously the choice of an ordering for A is fundamen-

tal to the solution. Cast in the right terms, the SVD expansion can be

simplified making the problem of deconvolution less computationally

cumbersome. As a prelude to understanding the more complicated

two-dimensional case, first consider the problem in one-dimension.

The equations derived earlier can be collapsed by letting

S= 0 (m = 0). In this case, only temporal variations are taken into

account. Such a representation is certainly valid for the class of

signals with poor resolution in 4, such as the short tone pulse.

The chapter begins with a review of the Discrete Fourier Transform

(DFT) in one dimension. Next, the circulant matrix is introduced. It

will be shown that the circulant arises naturally in writing the

convolution in matrix form. Being a well-behaved matrix form, the

circulant reduces the complexity of the problem and Sections 3.4 and 3.5

detail the process of forming the pseudo-inverse and employing it to

deconvolve. Finally, it is shown in section 3.6 that by writing the

convolution in circulant form, deconvolution via the pseudo-inverse

method is in fact identical in form and complexity to deconvolution via

the standard spectral division method.

3.2 The One-Dimensional Discrete Fourier Transform (DFT)

Consider an N-point sequence of uniformly spaced time samples,

x(O), x(1),...,x(N-1). The Discrete Fourier Transform (DFT) will be an
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N-point sequence of uniformly spaced coefficients, X(O),

X(l),...,X(N-l), and the two are related by the following pair of

equations; 1101

N-1 kn

X(k) = I x(n)e 2 7Tj N k =011,...,N-1 (3-1)

n=0

1N-1 kn

x(n) = X(k)e 2 'T N n =01.,N (3-2)

k=0

The first is called the forward DFT, and the second defines the inverse

DFT, or IDFT.

If these two sequences are used to define the two column vectors,

x= tXox19 ...,vxN- Ty (3-3)

and

X= [Xl,X 2,...,XN..lT, (3-.4)

where the sample number is now written as a subscript, the DFT operation

can be written as a matrix multiplication,

XFNX. (3-5)

The new matrix, Fis called the N-point DFT matrix, where

kn

(LNkn = e 2 -7j N )k,n,=0,1,...,N-1. (3-6)

From Equation (3-5) the IDFT can be directly written,

x F HX (3-7)
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which is in agreement with the matrix expansion of Equation (3-2) within
I

a constant, specifically N. (.)H is the Hermitian transpose operator.

This matrix formulation will be useful in the following sections.

3.3 Circulant Matrices

Circulant matrices, or circulants, are a highly tractable class of

matrices. Eigenvalues, eigenvectors and inverses are simply and

efficiently found, making the circulant a desirable form in which to

cast the problem when it is possible to do so. The circulant matrix, C

is necessarily a square matrix and has the form

co  cl c2 . . . . . CN- 1

CN-1 co cl ..... cN-2

C . .. .. (3-8)

cj c2 ..... CN- 1 cO

Because the NxN matrix C can be completely specified by a single vector

of length N, the notation

C= circ{co,cl,..., cN I } = circ {cT } (3-9)

is used without loss of information. The circulant is a special type of

Toeplitz matrix, and often used to approximate and explain the behavior

of the latter.[
7 ]

Of the many special properties of the circulant, the following four

are relevant to the discussion to follow.
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(i) If B and C are both circulant matrices, then the product BC

commutes and is also circulant. That is,

D = BC = CB = circ {d}.

(ii) All circulants have the same set of eigenvectors.

Siecifically, the mth eigenvector of an N x N circulant,

wm = N-I/2 [wo, wm, w 2m, ..., w(N-l)mjT,

m = 0, 1, ... , N-I, (3-10)

where

w = e2 j.(I/N) (3-Il)

and the N1- /2 is a normalizing constant. These eigenvectors

are the same as the vectors in the IDFT matrix F. In fact

if the matrix U is constructed using the Wm'S as the

columns, then

o I Wl I I WNH} =

w -N

within a constant (N-1 /2).

(iii) Corresponding to the eigenvector Wm, is the eigenvalue

m , where

N-I

Xm = c ckwmk, m=0, 1, ... , N-i (3-12)

k=O

and w is defined the same as above. Simply stated, the

eigenvalues are the OFT coefficients of the vector cT defined

in (3-9). If

S= {Aoi,..., ANI}T (3-13)
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then

T N• (3-14)

(iv) As a result of these properties, the SVD of C, from

equation (2-10) becomes,

C = FH AF5
-- -N AFN' (3-15)

where

A = diag{XoXl,...,XN I } = diag{(Fc)T}, (3-16)

an NxN diagonal matrix of the DFT coefficients of c.

There is one final point to make here. If C is given as a real

matrix, the SVD theorem requires that it be decomposable by real

matrices. Equation (3-15) makes no provisions for this. Whether C be

real or complex, it is still decomposed by the complex matrix FN and its

Hermitian transpose. The choice of matrices in the statement of the SVD

theorem is, however, not unique so that the decomposition may be

performed using complex matrices. It is required, however, that any

complex matrix used be tranformable into a real valued matrix by means

of a unitary transformation to preserve the space.

It is important here that one particular case be considered, that

for a real, symmetric circulant matrix A. This requires that the first

row (a) of A be circular symmetric about the time zero point (the first

sample), i.e.,

N
ai = aN.i if -I N even

N-I
or i,....- N odd. (3-17)2
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For a time sequence defined in this manner, the DFT coefficients will

necessarily all be real and symmetric, hence there will be a redundancy

in the singular values, i.e.,

o N
a i I,...,2 N even

N-N-i

or 1 1 ..., N odd (3-18)

In this case a new matrix may be formed from FH by taking linear-:--NIr

combination of the columns (singular vectors) corresponding to redundant

singular values. This is equivalent to defining a unitary transformation

(a rotation of the basis vectors).

Let these new basis vectors, ri, be defined

1 r- - N
r i  - 1 W + w ,.. , - 1; N even (3-19)

/N-2

and

r N-i j -- "' 1; N even (3-20)

where wj is defined in equation (3-10) and j =T. The cases i=0 and

N
1= f are special because the singular values co and aN/2 are real and

unique. The new basis vectors are now

r w
o o

(1, cos(21i/N),...,cos(2ii(N-l)/N)} T ,  ......

rN/2 wN/2

/7T Nr N-i AIN 0, sln(2ni/N),..., sin(2Tri(N-1)/N)}T, i=1,. - -1.
2

(3-21)
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where

L-I (3-26)

and N is taken to be even. The ai's are the ambiguity function values

found from equation (2-5) with 4=O (m=0). Because the =O slice of the

ambiguity is symmetric about T=O (n=O),

a = {ao,al,...,aL',O,...,O,aL',...,a2, al}T, (3-27)

that is because

ai = a.i, i = 1, 2, ..., L' (3-28)

The ambiguity function matrix,

A = circ {aT } (3-29)

is an NxN matrix and so this A used in Equation (2-7) completely

discribes the linear convolution of A and S. Using Equations (3-15) and

(3-16),

A = FH A F (3-30)

--N - -N'

where

= diag {(FN a)T, (3-31)

and the pseudo-inverse,

A =F HAN F (3-32)

from Equations (2-17), (2-18), and (2-19).

3.5 Deconvolution

Going back to the fundamental Equation (2-7), choosing the ordering

for A given by equation (3-9) dictates the orderings for M and S as
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well. If the scattering function is chosen to be P samples long and a

(equation (3-27)) has been padded with minimum necessary P-i zeroes,

then,

-- ( ,...0, S-p',... so... sp,,...,O,...O {0 } (3-33)

where

p? (P odd) (3-34)
2

and si is the sequence of samples of the scattering function padded at

both ends with L' zeroes. S is therefore a vector of length N. The

matched filter M is now necessarily defined as

M .= m_N ,....,mo,...,mN' }T (3-35)

where

N' = N-i (3-36)2

There is one special note at this point. Equation (3-36) requires that

N be odd. Since the SVD in Equation (3-30) benefits greatly in

computional efficiency from employing an FFT algorithm, N must be made

even, i.e., a power of two. In this case, a must be padded with an

odd number of zeroes, and zeroes must also be placed in the appropriate

positions in M and S.

Deconvolution is now performed by multiplying both sides of

equation (2-7) by the pseudo-inverse A+ to yield

A+ M = S (3-37)

and thus recovering an estimate of the true scattering function with the

blurring effects of the signal ambiguity function reduced. Combining

equations (3-32) and (3-37) results in
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FA+ F M = S (3-38)

Working from right to left on the left side of this equation, FN M

defines the DFT of the vector M. Each of the spectral components of

this DFT sequence is then multiplied by the corresponding spectral

component of A+, and the resulting vector transformed by the IDFT

matrix. Rewriting,

S = IDFT(DFT(aT)+ o DFT(M)} (3-39)

by virtue of Equations (3-16) and (3-27) where the ( )+ operator is

defined in Equation (2-17). The operation ( ) o ( ) is an element by

element multiplication of the two vectors.

3.6 Relation to Spectral Division

As was developed earlier, the discrete representation of the

matched filter in one dimension is simply the one-dimensional discrete

convolution of the ambiguity function and the scattering function, i.e.

m(k) = a(k) * s(k). (3-40)

With these sequences padded with zeroes as in (3-27) and (3-33), this

convolution of time sequences may be written as an element by element

multiplication of spectra via the convolution theorem.[ I0] The above

equation becomes

DFT~m(k)J = DFTfa(k)} - DFT(s(k)1, (3-41)

or more simply

DFTfs(k)} = >DFTfm(k)} (3-42)
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where >-< indicates an element by element division. If the

spectrum of a(k) has a wide dynamic range, then division by the small

values may cause large errors by amplifying the noise in these areas of

the matched filter. To avoid this, a new sequence is defined,

DFT{a(k)} 1 if >E

DFTta(k)}+. 0 (3-43)
0 if <E

where e is a judiciously chosen threshold value. Replacing this in

equation (3-42) and employing an IDFT operator on both sides yields

s(k) = IDFT[IDFT{a(k)}+ a DFT{m(k)}] (3-44)

which is identical to Equation (3-39). Thus it has been shown that the

SVD formulation is identical to spectral division and since definitions

(3-43) and (2-17) are the same, thresholding serves the same purpose in

both methods.
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Chapter 4

The Two-Dimensional Case

4.1 Introduction

The more general case of the problem presented in two dimensions

must now be discussed. To retain the efficiency of the algorithm in

this case, it is appropriate to reformulate the problem using a more

complex, yet still amenable matrix form for the matrix A. With this form

and such tools as the tensor product and the two-dimensional DFT, the

two-dimensional case is shown to be a highly tractable problem in the

context of the SVD.

Section 4.2 introduces the tensor product and the two-dimensional

DFT in a useful form. As mentioned earlier, a new matrix form, the

block-circulant-with-circulant-blocks form, is presented in section 4.3.

The singular value decomposition of this form is then given. Two-

dimensional convolution can now be written in two different forms. The

first results in a simple circulant matrix A and deconvolution reduces

to the case presented in Chapter 3. The second employs this new matrix

form and sections 4.4-4.6 show that in this case deconvolution via the

SVD is identical to deconvolution via two-dimensional spectral division.

The remainder of the chapter presents a few examples implemented

on the computer along with a short discussion of the considerations

involved in choosing a threshold.

4.2 The Two-Dimensional Discrete Fourier Transform (2DFT)

Before presenting the two-dimensional DFT, a brief review of the

tensor or direct product is in order. Consider a K x L matrix A and an
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M x N matrix B. The direct product, also called the tensor or Kronecker

product of A and B, is defined;

alB , aI2B, . ., al. -

A x B (4-1)

aK1B, aK2B, . ., aKlB

resulting in a matrix with dimensions KM x LN. This form is essential

to the following discussion.

Consider an M x N matrix x. The two-dimensional Discrete Fourier

Transform (2DFT) is a matrix X also of size M x N and is found using the

double summation[ 10]

N-i M-1 e2 j rkm +lnl
X(k,l) = I x(m,n)e + N (4-2)

n=O m=0

where

0 ( k < M-1 and 0 4 1 4 N-I. (4-3)

It is required that the zero-shift element be in the upper left corner,

i.e., x(0,0). If this sum is split and written,

N - I M -1 k- n , 1
X(k,l) = 7 [ I x(m,n)e -2 Tj 'T ]e 2 j -- , (4-4)

n=0 m=0

it can easily be seen that the term in the large brackets is the one-

dimensional DFT of each column, a total of N DFT's each of an M-point

sequence. The outer sum is clearly the one-dimensional N-point DFT of

each of the M rows. Thus the two-dimensional DFT can be performed

simply by performing a one-dimensional DFT on each column and also on
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each row. This is the usual method. The number of complex multiplica-

tion required to perform the 2DFT via FFT routines is

N(Mlog2 M) + M(Nlog 2N),

or more simply

MNlog2(MN), (4-5)

using the usual Nlog 2N rule[I
0 ] .

It will be very useful to be able to write the 2DFT in matrix form

as was done in the one-dimensional case. First a new operation must be

defined, the ravel. If A is an M x N matrix, the ravel of A is formed

by stacking the rows of A end to end to form one column vector of length

MN. That is,

rav[A] = {a 0 0 , a0 1, ... , aO(N-1), al0 , all, ... , a(M_1)(NI)}T = a

(4-6)

where the indices begin at zero instead of one and are written as an

integer pair of subscripts. The inverse operation is

irav~a00, a~l, ... , aO(N-1), al0, all, -. , a(M-I)(N-I} T

= irav (a) = A. (4-7)

With this definition, the 2DFT of A can be written

b = G rav[A], (4-8)

where b is an MN-point column vector and G is the MN x MN element 2DFT

matrix. By careful inspection of (4-2),

_G= F0FN, (4-9)
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the direct product of the two one-dimensional DFT matrices introduced

in Chapter 3. The resulting vector b is the ravel of the 2DFT of A,

that is if

B = 2DFT(A), (4-10)

then

B = irav(b), (4-11)

where b is given in (4-8).

4.3 More Circulant Matrices

The more complex form of the two-dimensional DFT over the one-

dimensional case makes the circulant form presented in Chapter 3 less

useful. A more complex matrix is needed to hold all the additional

information of the two-dimensional case. Yet it would be desirable to

find a new matrix form in which to cast the problem and still retain the

amenable nature of the circulant. It is for this reason that a more

complex circulant form is investigated. With a certain amount of

foresight the block-circulant-with-circulant-blocks form will now be

introduced. It will be shown in a later section that this matrix form

is indeed useful in writing the two-dimensional problem.

Let Ai be an N x N circulant matrix. Furthermore let

A= circ (AO, A, ... , (4-12)

The matrix A contains M circulant blocks arranged such that the blocks

themselves are circulant. The dimensions of A are MN x MN, a

necessarily square matrix called a block-circulant-with-circulant-blocks

matrix of order M, N. More simply, A is said to be in BCCBM,N. A short

example at this point is highly instructive.
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Example 1

Consider the following construction. Let

0 b Al = cfland A? f]

then
ab c d e f
b a d c f e

A= circ {A0,A_, A2 }  e f a b c d
f e ba d c

cd e f a b
d c f e ba

A is in BCCB 3 ,2. Notice that a matrix in BCCB is not necessarily a

circulant.

As an extension of the properties of a circulant given in Chapter

3, the following theorem[ 3 ] can be derived.

Let A be a matrix in BCCBM,N constructed as given by (4-12).

Furthermore, let Ak+l, k=O, ... , M-1 be the diagonal matrix of

eigenvalues of block Ak . The matrix A is diagonizable by the

unitary matrix F 0 FN and the diagonal matrix of eigenvalues of A

is given by

M-1
A= --" (4-13)

k=O

where
k
W k diag(j,wk, w2k, w(M-l)k) (4-14a)

M

and

w = e2 T j /M (4-14b)
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A valid eigenvalue decomposition of A is therefore,

A= (FM 0 LN) H A (QM 0 FN). (4-15)

With this construction in hand it is now appropriate to

investigate orderings of the two-dimensional ambiguity function matrix.

4.4 The Pseudo-Inverse in Two Dimensions

There are two distinct orderings of the ambiguity matrix to be

considered. The first is a more straightforward method and results in

a simple circulant matrix. Although this form permits easy calculation

of the singular values, the second form to be investigated is clearly

the preferable of thF two. This second ordering results in a matrix in

BCCB form a]im urmitting easy calculation of the singular values. It

will be hiown that this form is less computationably taxing and that

deccavolution via the SVD in this case is identical to deconvolution via

spectral division.

Consider the auto ambiguity function defined by equation (2-5).

This real-valued function has an inherent symmetry about aoo, that is,

aij = a(_i)(-j). (4-16)

It will be shown that this fact results in a real, symmetric matrix

which necessarily has all real eigenvalues. Another important

consideration is that of zero padding. The ambiguity function is given

to be K samples long in the @ direction (m) and 2L-1 samples long in the

r direction (n). If the scattering function is assumed to be P and Q

samples long in the and T directions, respectively, then the ambiguity

function matrix must be zero padded to be a minimum of M and N samples

long in the * and T directions, where
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M = K + P - 1 and N = (2L- 1) + Q - 1. (4-17)

Typically, however, M and N will be chosen to be the nearest power of

two greater than these minimums to permit use of the FFT routines. With

these two considerations, the following vectors are now defined.

a M  = - (0.... ..... . . .................... 0 )T

a-K'-1 = (0 ..................................... , O) T

a-K' = (O,..,0,aK-L ,', ,aKO, aKI,-, aKL,0,.., O )T

a0  = (0,...,0, aOL, .... a0 l, a0 0 , aol,..., aOL', 0,..., O) T

a K  = (O,..,0, aK'L',.., aK', aKO, aK ,-'.., aK'-L ,0,..,)T

aKA+l = (0, ............ . . ............... . . . ,0)

aM -(0, .............. ....................... ,

(4-18)
where

K K-1 M-I
K , L = L - 1, and M = ---- 419)

Each vector is padded with N - 2L + I zeroes and so there are M vectors

each with length N. Notice K, N and M are chosen to be odd, but they

can just as easily be chosen to be even.

Let the vector a be defined as the concatenation of all of these

vectors, that is, let
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a CT (4-20)

Furthermore, let a new vector a' be defined as the vector a cyclic

shifted to make a0 0 the first element. The ambiguity function matrix is

then defined,

A = circ{C'T}. (4-21)

Since a' is a vector of length LLN, the matrix A has dimensions MN x MN

and is a real, symmetric, circulant matrix.

Example 2

To better understand this construction, take the example of a 3 x 3

ambiguity function convolved with a 3 x 3 scattering function. In this

case,

K = P = 2L - 1 = Q 3.

Therefore,

M = 3 + 3 - I = 5 and N 3 + 3 - 1 = 5

by virtue of (4-17). Furthermore,

a- 2 = (0, 0, 0, O, 0)T

a I  = (0, al1 , al0 , all, O)T

a0  = (0, a0 l, a0 0 , a0 1 , O)T

a1  = (0, all, al0 , al. 1,

a2 = (0, 0, 0, 0, 0)T.

The matrix A is shown in Figure (4-1). It is clearly a 25 x 25 element,

real, symmetric, circulant matrix.
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The matrix defined in equation (4-21) can be decomposed as were the

circulants from Chapter 3. The singular values are simply the DFT

coefficients of the vector a'. With this construction, however, the DFT

coefficients have no physical meaning. In the one-dimensional case, the

DFT coefficients described the spectral contents of the ambiguity

function, but because in this case the vectors are lined up end to end,

the DFT loses this meaning.

There is one more point to mention before moving onto the second

construction. Using the standard Nlog 2N rule[101 for describing

computational complexity of the FFT, this matrix will requre MNlog 2MN

complex multiplications in computing a pseudo-inverse. This will be

used in comparison with the second construction now introduced.

Let the vectors ai be defined:

ao = (a0 0 , a0 l, ... , aOL, 0, ... , 0, aOL', ... , a0 2 , a0)T

a 1  = (al0 . all, ... , alL, 0, ... , 0, al- L , ... , al 2 , a I

aK' = (aK'0,aKi,.-, aK'L', 0,..,0, aK'L',..,aK'-2, aK'.l)T

aK +1 (0, 0 .......................... .0)T

aK +1-M = (0, 0, . .. . . . . . . . . . .. .. ,)T

a- K  = (aK0,aK-l,..,aK-L',0, .. , 0, aK'L',.., aK2, aKl)T

a- 1  = (al0 , al-l,..., alL',0, ... , 0, all, .... a1 2 , all) T

(4-22)
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where the equation in (4-19) still hold and each vector is padded with a

minimum of N-2L+I zeroes. Also, the indices are written as an integer

pair of subscripts. Again, there are M vectors each of length N.

Furthermore, let

A0  ir{a 0

-T
A= circ{a I

AM-1 circ{-a_ 1 }. (4-23)

Finally, the ambiguity function matrix is defined

A circ{AO, AI, ... , A M-I} (4-24)

a matrix in BCCBM,N.

Example 3

Consider the following example. As in the previous example, let

both the ambiguity and scattering function be described by 3 x 3

matrices. Since Equations (4-17) still hold,

M = N = 5.

The vectors are defined:

a0  = (a0 0 , a0 1 , 0, 0, a0 l)T

al = (al0 , al1 , 0, 0, all)T

a2 = ( 0, 0, 0, 0, 0)T

a-2 = ( 0, 0, 0, 0, 0)T

a- = (alo, all, 0, 0, all)T.
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The resulting matrix A is shown in Figure (4-2), and is clearly in

BCCB 5 ,5 . Notice that A is also real and symmetric guaranteeing real

singular values.

With A in BCCB form now, Equations (4-13) and (4-15) can be used

to decompose the matrix. Let

( A ) - I if (A)>
(A = (4-25)

0 if (A)i  0

where (A)i is the ith singular value, that is the ith diagonal element

of A. The pseudo-inverse of A, designated A+, is calculated as

At = (F F)H+ (_ 10 F (4-26)

where e is choosen large enough to avoid the harmful effect of ill-

conditioning in A, but small enough to retain sufficient structure for

deconvolution.

4.5 Two-Dimensional Deconvolution

With these two orderings for the ambiguity function matrix, the

remaining two matrices given in the fundamental equation (2-7) are also

determined. Consider the first A matrix form. Let

A = { , .- a .... }T (4-27)

where the ai vectors are defined in (4-18). It should be noted that A

is not the ambiguity function matrix in (2-7). It is the matrix defined

in (2-5), the discrete representation of the ambiguity function. The

matrix A is a ravelled matrix defined in (4-21).
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Let the scattering function have a form identical to A, that is

S = -M , .... -SO ... M 1 T (4-28)

where the vectors si are identical in form to the ai's but with sij the

scattering function values substituted for the aij's. Again, S is not

the scattering function matrix in (2-7). The matched filter matrix,

H, given by (2-6), represents all possible coverings of the matrix S by

the matrix A. The (i, j) th element of M is the sum of all the products

of the coefficients a and s with A shifted i elements over and j

elements up or down relative to S.

Example 4

Consider the case given in example two. The matrices A and S are

defined,

0 0 0

0 al_ 1 alo all 0

A: 0 a0 -1 a00  aOl 0

0 a-1-1 a.lO a.11 0

o 0 0 0 0

and

0 0 0

0 s_ SIO sl 1 o

S = K so_ 1 S 0o 0

0 S-l_ 1 s-10 S-l1 0

L0 0 0 0 01
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To find (M)2-1 , place A on S and shift A one element to the left and

2 elements up,

0 0 0 0

Sal-1I al0  all 0

0 0 0 0 0 0

a-10 a-11
o 0 Sl- 1 Sl 0  0 0

0 0 0 0 0 0

0 S-l-1 S-10 IS-11 0

0 0 0 0 0

and sum all the non-zero products.

()2-1 = al 0 Sl-1 + al-I Sl0

taking advantage of the symmetry of the ambiguity function as given in

(4-16).

The ravel operator defined in equation (4-6) is now employed in

the following two definitions. Let

S = rav{S} (4-29)

and

M = ravyM}. (4-30)

M and S are actually vectors, but will continue to be written with the

underline and treated as matrices. It was with foresight that A was

constructed as given by (4-21), because now,

M = AS, (4-31)
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the fundamental equation. The matrix A in this case is simply a

circulant and the deconvolution,

S = A+M (4-32)

is identical to the method described in section 3.5. Using the case

given in examples two and four along with Equations (4-29) and (4-30),

Equation (4-31) is shown in its expanded form in Figure (4-1). There is

nothing new here, so the second A matrix construction will be

discussed.

In a similar manner to the previous case, let

A ao,....,aK +l ..... aK ... ,..a }T (4-33)

where the ai vectors are defined in (4-22). Again, let S be defined

in a similar manner as A but with sij substituted for aij. The

convolution operation producing M is different. In the previous case

the (M)oo element appeared in the center of the matrix. In this case,

M)O)o appears in the upper left corner position in the matrix. This

is the result of the ordering chosen for A, the ravelled ambiguity

matrix. It is important that (M)oo, the zero-shift element be in this

position when employing the DFT routines as will be done shortly.

M and S are formed once again as given in (4-29) and (4-30).

Continuing the case given in example three, (4-31) is expanded as shown

in Figure (4-2).

Using (4-15> and (4-25) the deconvolution in (4-32) can be

written;

S= (F 0 F ) H A+ (F 0 F ) M, (4-34)
- - -N - N -_N -

where the matrix A is in BCCBM,N . Going back to the definition of the

2DFT, clearly,
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(FN f FN) M = (FN 0 N) rav{M = rav{2DFT(M)}. (4-35)

Since A+ is a diagonal matrix, the product

A+ (rav{2DFT(M)}] (4-36)

results in a column vector of size N whose ith element is

(A+)i [rav{2DFT(M)]j. (4-37)

One more term to the left in (4-34) is the 12DFT matrix. The

scattering function estimate, S, can therefore be written

S = 12DFT[irav{(A )i.[rav{2DFT(M))i}ji (4-38)

which may appear complex, but it will be shown that this equation can be

simplified.

4.6 Relation to Two-Dimensional Spectral Division

Deconvolution via spectral division in two dimensions is

fundamentally the same as in one dimension. Using the definition in

(4-33), (4-29), and (4-30), the convolution is written,

M = A**S (4-39)

and employing the convolution theorem,

2DFT(M) = 2DFT(A) o 2DFT(S) (4-40)

where (-)o(-) is an element by element multiplication. Deconvolution is

simply written,

2DFT(,M)

S = 12DFT >-----< (4-41)

2DFT(A)J
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where again >------- < is an element by element division. Let

[2DFT(A)]+ t[2DFT(A)]- if >(-=2F(I -- i if'e(4-42)
-- i 0if s

and (4-41) becomes;

S = 12DFT{[2DFT(A)] o 2DFT(M)}. (4-43)

Returning to the statement of the SVD for the BCCBMN matrix

embodied in Equations (4-13), (4-14) and (4-15), a careful look at the

matrix of singular values, A, must be taken. Am+ 1 is the diagonal

matrix of singular values of block . That is,

= diag{DFT(a)m)} (4-44)

where am is the first row of the matrix defined in (4-23). Rewriting

(4-44) using summation notation,

nNN-I (LN)(445

(A i)i (am)ne -2  (4-=,...,N-45)
n=O

for the ith element of A+I" Looking at one particular element of A,

specifically (A)kl, the Ith element of block k.

M-1

(A)kl I (km(A
M=O

M- -I _ -2 (nl km

= 
L  (am)ne T- 2

m=O n=O
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and therefore,

M-1 N-i - 2 Tr kmn n1
(A)kl I (awe M I+N]

m0O n=O

1=0,..,N1 k=,...M-1'(4-46)

which is exactly the form of the 2DFT.

The matrix of singular values is now written,

A = diag{rav[2DFT(A)]}. (4-47)

Putting this result into (4-38) results in,

S = 12DFT[irav{diag[rav{2DFT(A)}]1.. rav{2DFT(M)}.I. (4-48)

But since,

diag {rav(A)li - {rav(B)li =rav(A) -rav(B)

and

irav frav(A) o rav(B)} = A o B,

(4-48) is simplifed,

S = 2DFT{[2DFT(A)] 2DFT(>t)} (4-49)

precisly the form in (4-43) resulting from deconvolution via spectral

division. In back cases, the [ ]+ operator is defined in (4-42).

In comparison to the first A matrix form, (4-21), the number of

complex multiplication required to form the pseudo-inverse in this case

is

K10g2N + INlog 2M. (4-50)
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This is the result of the fact that there are M-K rows of all zeroes as

is clear from looking at figure (4-2). It is not necessary to DFT these

rows and for large matrices, this savings can be significant. Form 2

also has the advantage that the pseudo-inverse matrix coefficients

retain their physical meaning, i.e., they are the spectral components of

the original matrix. This is useful in choosing a threshold, E, at

which to truncate the SVD.

4.7 Examples of the Algorithm

The algorithm is applied in the following minner. A ;ignal x(k) is

defined and the ambiguity function a(m,n) is calculated via (2-5). The

matched filter is generally calculated as the correlation of the return

signal with a time and frequency shifted version of x(k), the continuous

case being given in (2-I). It was stated in Chapter 2 that a single

return can only produce one realization of the scattering function and

so the expectation operator E{.) was introduced. Averaging over many

interrogations of the channel reduces the variance of the process;

hence, the deconvolution algorithm can produce a better estimate of the

scattering function. The ideal case is the double convolution of a( ,T)

and s(O,r) as given in (2-7) and in the examples to follow, this will be

used as the matched filter to be deconvolved.

The matrix A is formulated using the definition given in (4-24),

the second form. For all the cases given, a(m,n) was choosen to be 64 x

1024 samples long in the m and n directions respectively. This includes

the required zero padding. With this construction, the algorithm is now

embodied in Equations (4-49) and (4-42). It was mentioned earlier that

careful consideration must be given to choosing e. This will be shown

graphically.
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Three distinct signals were chosen and are listed in Table (4-1).

Signal I is a VFM consisting of an upchirp linear FM (LFM) of bandwidth

500Hz followed by a downchirp LFM of the same width both centered at

50kHz. Signal 2 is simply a single upchirp LFM with a 500Hz bandwidth.

Signal 3 is a bit more complex. It is generated from a Costas Array

developed via a Welsh construction[ 5], and is a six-element signal

based on the 3n mod 7 construction given in the table and will be

called a CAW. The result is an ambiguity function with , high

resolution main spike surrounded by a pedestal. Surrounding this

pedestal is a clear area containing no ambiguity volume. Minor lobes

appear outside this clear area region and since they contain relatively

little volume, only the main lobe area will be considered.

Three different scattering function were chosen each consisting of

a particular number of point scatterers. They are given in Table (4-2).

The first example uses signal type I (STI) and scattering function I

(SFI). Figure (4-3a) shows the matched filter output. OdB is defined

at the peak spectral component of the ambiguity function and the

threshold, e, is defined with respect to this peak. The remainder of

Figure (4-3) shows the effect of employing particular thresholds. At

-10dB, there is insufficient information retained to deconvolve with

any accuracy. In this case deconvolution is not helpful. As the

threshold is reduced, the algorithm is able to clean up the matched

filter image. Since there is no noise in this case, c may be choosen as

low as desired without any harmful side effects.

The same is shown to happen for the cases of (ST2 and SF2) and

(ST3 and SF3) resulting in Figures (4-4) and (4-5), respectively.
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Table 4-1 The signal definitions used in the examples are given here.

Number of Subpulse Duration Band Center Bandwidth
No. Signal Type Subpulses Number in msec. in Hz in Hz

1 VFM 2 1 50 50000 +500
2 50 50000 -500

2 LFM 1 1 50 50000 +500

3 CAW 6 1 10 49700 0
2 10 49100 0
3 10 51500 0
4 10 50300 0
5 10 50900 0
6 10 48500 0

Table 4-2 The scattering functions used in the examples are defined
as a collection of point scatterers as given here.

Number of Highlight Tau Position Phi position Relative
No. Highlights Number in msec. in Hz Strength

1 1 1 0 0 1

2 2 1 0 0 1
2 10 0 1

3 3 1 0 0 1
2 10 8 1
3 20 16 1
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Matched Filter Output

-. 86 -. 04 9. .64 .06

TAU

(a)

Ieconvolved Matched fitlter

Thraohold et at lode down

I Pm

-.89 -. 94 3. .84 .96
TAU

(b)

Figure 4-3 Examaple 1: The VP-I and a one highlight scattering function.
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Oeconvolved Matched f'titer

Threshold *et at 20dB down

TAU

(C)

D38convolved Matched fLits,-

Threchold vet at S0dB down

Am3 -. 94 .. 8-4

TAU
(d)

Figure 4-3 Continued
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Deconvolved Matched f'tltei-

Thpezhold 4et, at 40dB down

TAU

(e)

DeconvolIved Matched f I Iter

Threshold vet at 50dB down

-. 06 -. 84 S..64.8
TAU

Figure 4-3 Continued



50

Matched Flter Output

-.86 -. 04 U. .84*6

TAU

(a)

Deconvalved Matched l~ter

Threshold set at 10dB down

'TAU

(b)

Figure 4-4 Example 2: The LEM and a two highlight scattering function.
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Deconvolved Matched flter

Threvhold "et at 20dB down

-.86 -. 84 8. .84 .a6

TAU

(C)

Osconvolved Maltched fltter

Threshold st at S~dS down

29.0

-8-.84 S. .84 .86

TAU
(d)

Figure 4-4 Continued
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Deconvolved Matched f'lter

Threshold cot at 40dS down

s"..

PHX

-as -. 84 8..94 .86
TAU

(e)

Deconvalved Matched ftlter

Threshold set. at SadB down

64a.

-."a 1 
PHI

-. 8-.84 S. .04 .94

TAU

Figure 4-4 Continued
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Matched Filter Output

4.6

TAU

(a)

Osconvolved Matched ftlter

Threshold set at 10dB down

INI

?AU

(b)

Figure 4-5 Example 3: The CAW and a three highlight scattering function.
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Deconvolved matched ftlter

Threshold set at 20dB down

4.8

TAU

(C)

Deconvolved Matched ftlter

Threshold set at S0dB down

A28

TAU
(d)

Figure 4-5 Continued
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Deconvolved Matched fliter

Threshold set at 40dB down

126.

TAU
(e)

Deconvolved Matched fl.1ter

Threshold set at S~c4B down

TU.9 ls .92 .

Figure 4-5 Continued
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Next, noi3e was added. If it is assumed that Gaussion zero-mean

white noise is present at the input to the matched filter, the output

noise distribution is chi-square of order two, more commonly called the

exponential distribution. It is easy to show this to be the case. The

noise in the return is

n = Xr + jXi, (4-51)

a complex random variable (j = /T) where both Xr and Xi are zero-mean

Gaussian random variables. At the output of the matched filter, the

noise

z = fnJ 2 = X2 + X 2 (4-52)
r i'

which, as advertised, results in a second order chi-square distribution.

The probability density function, fz(z), is written

f (z) - 1 2 e 2  (4-53)

Z2a 2a

It is easy to show that the mean of this distribution,

1 2 (4-54)- 2

With this determined, the SNR was choosen to be the peak to average

noise in the matched filter, that is

(peak)MF
SNR = 10 log ( ). (4-55)

If a particular SNR is to be generated, then P is chosen to be

(peak)MF
S SNR (4-56)

0
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and the distribution in (4-53) used to generate noise into the matched

filter.

The choice for e now becomes more critical. ST3 and SF3 were used

and an SNR = 20dB chosen to form the next example. If e is chosen too

high, insufficient information remains to deconvolve, as shown earlier.

There is now, however, a lower limit. If e is set too low, the noise is

amplified and the algorithm produces poor results as is clearly seen in

Figure (4-6). It would be helpful to have a general idea of where to

set the threshold, given an SNR.

Toward this end, one important property of the auto-ambiguity

function is fundamental. This is the self-transform property[2].

Mathematically,

f f a(T,O)e-2 rjV-TO ]drd = a(v,a). (4-57)

This is important, because now the singular value spread, that is, the

ratio of the largest to smallest 2DFT coefficients of the ambiguity

function, is equal to the ratio of the largest to smallest ambiguity

function values. The SNR can, therefore, be defined with respect to

either the ambiguity function, or its 2DFT. Finally, since the matched

filter is the result of a linear operation (the convolution), the

threshold may also be related to the peak of the matched filter. It,

therefore, makes sense to set the threshold somewhere around the average

noise level defined as the SNR.

In this manner, if the matched filter output SNR is, for instance,

20dB, then the threshold should be set relative to this 20dB down level.

Figure (4-6) shows the algorithm's performance on a matched filter with
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Matched Filter Output Nots level set at 20dB down

4.1

TAU (a)

Deconvolved Matched filter Noise level set at 22dS down

Threshold zet at 10dB down

42.

?15 -,a Jas di

TAUE
(b)

Figure 4-6 Example 4: Performance of the algorithm with noise in

the matched filter.
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P~econvolved Matched fitlter Noive level vet. at 20dB down

Threshold get at 20dB down

4.S

TAU

Deconvalved Matched filter Notee level set at 22dB down

Threshold get at 2SdB down

JC=001 1 28.

TAU
(d)

Figure 4-6 Continued
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Deconvolved Matched f'tlter Nots level set at 20dB down

Threshold set at 50dB down

4.1

(ey

Deconvolved Matched tliter Nots level set at 20dS down

Threshold set at 55dB down

126.

TAU

Figure 4-6 Continued
*For clarit:,, the slices behind the last highlight have been omitted.
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a 20dB SNR. It should be noted that since the CAW signal has an

effective processing gain of about 15.5dB, a 20dB output SNR represents

a 4.5dB input SNR which represents a relatively noisy return.

Figure (4-6a) shows the matched filter output. The threshold is

slowly decreased from -10dB to -40dB. At -10dB, the algorithm produces

a poor estimate as expected. Through -20dB, the algorithm effectively

cleans up the image. On the average, the noise has no effect up to this

point. As e is decreased more, the noise starts appearing in the

estimate until at -40dB, the scattering function is almost completely

hidden by the noise.

The expected error in the estimate can be found by considering the

parameterized equation

(A + 6F)S(5) = (M + 6f) (4-58)

where

S(O) = S. (4-59)

The noise added to the matched filter is contained in the vector f and

the effect of truncating the SVD expansion is quantified by the matrix

F. Employing a Taylor expansion on S(6) about zero,

S(S) = S + 6S(O) + 0(62). (4-60)

Making a few substitutions it is easily shown that[ 61

JS(5) - SI -1 (A) [ A + &M' _1 (4-61)

where

K(A) = max (4-62)' min (
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the conditioning number of the matrix A. This places an upper bound on

the error in the estimate. It was assumed that the 0(62) terms are

negligible.

Returning to the definition of the SVD,

N 
-Aa i u -u (4-63)

i= 1

where the Ui's are the singular vectors assuming A is a real symmetric

matrix. The sum can be split into two sums,

- J ±T - -TA To i  u u . + CT a . u . u . (4- 6 4 )

a.>c G. 4 E
1 1

the right term containing the singular values which were taken out of

the SVD expansion due to truncation. Therefore,

F = - u (4-64)
- - 1 1 1

0. 4E1

and since truncation also reduces the conditioning number,

a ma
K(A) = 'a. ain m a (4-65)

a . 'mmmin

the smallest singular value now being equal to or greater than the

threshold value E. Equation (4-61) is now,

IS(5) - S1 max 0 1 +6 J. (4-66)

- min L1A 1 -II]
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To support the validity of this result, there are three limiting

cases to consider. The first is the case of no noise in the matched

filter. Since 4f[l = 0, the threshold e can be set to zero at which

point the term 9F1 = 0 and as long as Gmin > 0, the error bound is

zero.

Now assume there is noise, i.e., nf9 * 0. As e approaches its

maximum value of amax, the term 1IFI gets large and hence the error bound

grows large. This was observed in the preceding examples for a

threshold set too high.

Lastly, let e go to zero and assume, as was the case in the

examples, that A is ill-conditioned, that is K(A) is large. The term

3IFI goes to zero but as amin gets smaller, amax/Umin grows large and in

multiplying by Iftli, the error bound again grows large. This was

observed as the result of setting the threshold too low.

Thus it has been shown that Equation (4-66) is in agreement with

the actual results demonstrated in the examples. Considering this

equation term by term, the general trends can be seen. Consider the

error versus threshold (e) behavior of the conditioning number

multiplied by the noise (flI) term. For a given matched filter, the

noise term is constant. If the threshold is set to zero, this term is

at a maximum. As e is increased, the conditioning number decreases

monotonically to a value of one where this term reaches its minimum.

Next, consider the conditioning number multiplied by the truncation

error (Fi) term. If the threshold is set to zero, JF3 = 0 and so this

term is at a minimum. As c is increased, the error term increases and

the conditioning number decreases to one. It is difficult to predict

the actual behavior of this term but it is clear from the examples that
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this term has its minimum at s = 0 and its maximum when the conditioning

number reaches a value of one.

Summing the two terms, it becomes clear that there is a minimum

error somewhere between the two extrema. This idea opens up a fascinat-

ing new topic which deserves further attention and it is the recommen-

dation of the author that this be investigated in future work.
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Chapter 5

Summary and Conclusions

The expected matched filter output from a communications channel

characterized by a scattering function is considered. Treating this

matched filter as an image, blurring due to the properties of the

interrogating signal is modelled as a convolution process. Treating

convolution as a multiple band-pass filtering operation, the process of

deconvolution becomes the problem of finding the inverse filter. This

is the basis for the standard spectral division method of deconvolution.

The spectrum of the filter modelling the convolution process is simply

inverted to yield the inverse filter. Problems arise when the original

filter has a wide dynamic range as division by small numbers results in

amplification of any noise in those spectral regicns.

The thesis details a formulation of the problem employing an SVD to

produce the inverse filter. Written as a simple matrix multiplication,

the deconvolution is performed by finding a pseudo-inverse matrix used

to remove the effects of the ambiguity function. The problem was first

formulated to take advantage of the highly tractable nature of the BCCB

matrix form. It was shown that deconvolution via the pseudo-inverse

method is identical to deconvolution via spectral division.

If the matrix to be inverted is ill-conditioned, the pseudo-inverse

deconvolution becomes an inherently noisy process. The reason is due to

a wide dynamic range in the ambiguity function spectrum, identical to

the cause of problems in the spectral division method. The singular

values are shown to be equal to the values of the spectral components of

the ambiguity function. Spectral regions with small values have a low

SNR in a noisy matched filter; hence, the inverse filter accentuates the
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noise. Attempting to diminish the problem, the SVD expansion is

truncated.

As a result of the truncation, resolution is lost in the deconvol-

ution process. There is, therefore, a trade-off between minimization of

the noise and retained resolution of the process output. This is shown

graphically. A short analysis of the expected error provides an equa-

tion which was shown to properly predict the trends. More importantly,

the equation suggests the existence of a threshold value which minimizes

the error. It is highly suggested that this topic be given attention in

furthering this thesis. Such a relationship can prove to he very usefii

when annly ng a dn ,olution algorithm.
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